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Transition prediction capabilities are critical to wing design for minimizing skin friction while retaining
the desired lift characteristics. A new stability analyzer is presented that combines beneficial aspects of
both temporal and spatial formulations, to result in an efficient stability analyzer. This technique was
validated by comparison with the recognized Office National d'Etudes et de Recherches Aerospatiales/
Centre d'Etudes et de Recherches de Toulouse method and observed transition locations. It is demon-
strated, through numerical examples, that the temporal frequency tracking procedure is equivalent to its
spatial counterpart.

Nomenclature
A = amplitude
c = chord length, m
/ - frequency, Hz
M = Mach number
[M,], [Ps], [Pt] = eigenvalue problem matrices
N = number of grid points
n = amplification factor
P = mean pressure
p = instantaneous pressure
Q = mean flow quantity
q = instantaneous flow quantity
Re - Reynolds number, Ueclv*
t = time
U, V = mean velocity components
u, v* w = instantaneous velocity components
Vg - group velocity
x, y, z - local Cartesian coordinates
a, /3 = wave numbers
y, = spatial growth rate along the path of

propagation
8e = boundary-layer thickness, m
5* = boundary-layer displacement thickness, m
77 = transformed normal coordinate
v* - kinematic viscosity
T = instantaneous temperature
<t> - generalized eigenvector
I/, = wave orientation
oj - complex frequency
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Subscripts
e

r, /

Superscript

dimensional quantities at the edge of the
boundary layer
real and imaginary parts

= perturbation quantities

I. Introduction

T HE potential for reduced frictional losses represented by
sustained laminar flow over the airfoil has long been rec-

ognized. In this context, natural laminar flow (NLF) airfoil
technology finds a promising field of application. However,
drag prediction for NLF wings presents one of the most de-
manding problems posed in applied aerodynamics; mainly be-
cause it hinges on obtaining an accurate estimate of the loca-
tion of laminar/turbulent transition of the boundary layer. In
the industrial environment, the development of NLF airfoils
requires a cost-effective design tool capable of delivering a
good approximation to the location of transition. The linear
stability theory, along with the empirical e" method, provides
an appropriate framework for transition predictions over wings
in the cruise regime. Among others, Mack,1 Malik and Or-
szag,2 and Cebeci and Stewartson,3 have developed numerical
methods for the solution of the linear stability equations.
Mack1 used an initial value method (IVM) for the solution of
the spatial stability equations. Malik and Orszag2 considered
IVMs computationally slow and proposed a more efficient
solver for the solution of the temporal stability equations based
on a boundary value method (BVM). Cebeci and Stewartson3

and Arnal and Juillen4 proposed BVMs for the solution of the
spatial stability equations. The group of the J.-A. Bombardier
Chair has recently developed a linear stability analyzer [Sta-
bilite de la Couche Limite Compressible (SCOLIC)] based on
the temporal formulation.5 Pressure distributions were taken
from available experimental data. The boundary layer was pre-
dicted using the MAIN computer code.6

This article presents an extension of SCOLIC: a hybrid
method was developed7 to exploit the strengths and advantages
of both the temporal and spatial formulations, resulting in a
very efficient stability analyzer. The resulting stability analyzer
has been validated through comparisons with available nu-
merical solutions and experimental data.
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II. Linear Stability Theory
A. General Formulation

The customary notation is adopted for a general three-di-
mensional, compressible boundary layer. For a local Cartesian
coordinate system, the flow variables are assumed to be of the
form

q(x, y9 z, t) = Q(y) + q(y)exp[i(ax + /3z - cot)] (1)

where Q(y) is the mean laminar profile and the tilde denotes
the perturbation quantities for any of the velocity components,
pressure, or temperature, a and /3 and co are generally complex.

The problem is formulated using the parallel flow assump-
tion [V(y) = 0], which implies that the pressure in the boundary
layer is constant in the normal direction (SP/dy = 0). The def-
initions of Eq. (1) are substituted into the momentum, state,
and energy equations. The nonhomogeneous terms are elimi-
nated by subtracting the laminar mean flow solution from the
equations. Neglecting the nonlinear and higher-order terms
yields a homogeneous system of five linear, second-order or-
dinary differential equations. This mathematical model is, in
general, not amenable to analytical solution techniques. Con-
sequently, the solution procedure proposed here is based on
numerical techniques.

There are several discretization strategies suited for the so-
lution of the linear stability equations. In our approach, a finite
difference method with a staggered mesh for pressure was cho-
sen. It is convenient to map the physical domain 0 ^ v ^ 8e
into a transformed domain 0 ^ r] ^ N — 1, similar to that
proposed by Malik and Orszag.2 This transformation was pro-
posed to allow a fine resolution in the critical layer of the
physical domain while using a uniform grid spacing in the
transformed domain. The main benefit is that the finite differ-
ence expressions for the first and second derivatives in the
transformed domain are then second-order accurate. With this
mapping, the discretized system can be expressed as

(co[M{] + a[M2] a2[M3] + /3[M4]

= 0

where 4> is the perturbation vector:

= (au t), p, f, aw — /3u)

(2)

(3)

{<!>} is a (5N — 9) coefficient vector representing the discrete
eigenvectors, [A/J are (5N — 9) X (5N — 9) coefficient ma-
trices.

The disturbances vanish at the wall and in the freestream,
except for the pressure fluctuations. The staggering obviates
the need for direct treatment of the pressure at the boundaries.
Hence, in the framework of the linear stability theory, the
boundary-layer stability analysis reduces to a homogeneous
eigenvalue problem for which nontrivial solutions exist only
for certain combinations of a, /3, and co. In general, a, /3, and
co are complex numbers, corresponding to six real parameters.
Solution of the eigenvalue problem provides a relation for only
two of these so that the resulting system of equations is not
mathematically closed. It is thus customary and necessary
to make some basic assumptions about the nature of a, /3,
and co.

B. Temporal Stability Theory
In the temporal stability theory, a and /3 are assumed real.

For given values of a and /3, the system of equations is ame-
nable to a linear eigenvalue problem in co:

= co[M{]{<S>}

where

(4)

[M6]) (5)

The real part of the temporal eigenvalue cor is the frequency,
and the imaginary part o>, is the temporal growth rate.

The temporal stability theory yields an eigenvalue problem
that can be solved using classical numerical algorithms. These
methods can be divided into two categories: 1) global and 2)
local methods. Global methods are used to obtain the complete
eigenvalue spectrum. These are quite expensive in terms of
computational resources, but they do not need any initial guess
for the eigenvalue. Local methods are more efficient and gen-
erally more accurate, but require an initial guess for the ei-
genvalue.

The SCOLIC implementation of the temporal stability the-
ory calls for a coarse grid solution to a global calculation,
using the QZ algorithm,8 performed to yield a spectrum of (5N
— 9) eigenvalues. A suitable candidate is then selected as an
initial guess for a local method applied to a finer grid for the
purpose of improving the solution estimate. Local calculations
use an inverse Rayleigh iteration procedure.2

C. Spatial Stability Theory
In the spatial stability theory, co is assumed real and given,

a and /3 are complex. For given values of /3, the resulting
system of equations can thus be expressed as a nonlinear ei-
genvalue problem in a:

= (a[M2] (6)

where

[PJ = ~ /3[M4] + /32[M5] + [M6]) (7)

The real part of the spatial eigenvalue ar yields the wave
number, and the imaginary part at yields the spatial growth
rate.

The resulting eigenvalue problem is nonlinear in a and it
can be solved using, for example, the companion matrix
method.9 This standard approach uses a simple transformation,
first proposed by Bridges and Morris,9 to linearize all terms.
The resulting form of the eigenvalue problem is suited to the
standard QZ algorithm for computing the entire eigenvalue
spectrum. The order of this eigenvalue problem is almost twice
as large as the order of that corresponding to the temporal
formulation, which makes the global calculations in the con-
text of the spatial formulation much longer to perform.

Such a global method was considered inefficient for engi-
neering calculations. Therefore, the inverse Rayleigh iteration
method was preferred and applied to the following linearized
problem:

= a([M2] + aguess[M3]){0} (8)

where aguess represents the needed initial guess for the eigen-
value of interest. The solution is obtained iteratively.

In a traditional spatial method, the initial guess is provided
by a global calculation using an appropriate solution proce-
dure, such as the companion matrix method. In this article, a
more efficient procedure, presented in Sec.III.C, is proposed
for the calculation of the initial guess.

III. Transition Prediction
The main assumption in linearized transition prediction is

that there exists a critical amplification of the disturbances at
the transition location. The amplitude ratio A/A0 can be cal-
culated assuming that the growth of the disturbance from its
initial amplitude A0 to the critical value Acrit can be predicted
by the linear stability characteristics. The ratio A/A0, or the
more commonly used amplification factor, n = €n(A/A0), is
therefore calculated by integrating y/, which is parallel to the
real part of Vgr:

(9)n(s) = I - y
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where s is a point of the path of the disturbance, and s0 is the
point of inception of the perturbation (y, = 0). The real part
of the group velocity is given by

/ da) dcoVKr = Re —, —g \da dp
(10)

For low background turbulence levels in two-dimensional
flows, it has been observed experimentally that n is approxi-
mately 9 at transition. This correlation of the amplification
factor with transition location is the basis of the e" method.
The /i-factor calculation is usually done under the constraint
of constant dimensional frequency:

27T
(11)

A finite number of frequencies are selected, and an n factor
is calculated for each of them. The frequency that reaches the
critical n factor first is considered the most relevant frequency
for the prediction of transition location.

A. Temporal Frequency Tracking
In the temporal stability theory, there are four independent

parameters: a, ft, u>r, and &>/. The temporal eigenvalue problem
provides two real relations. In the calculation of the n factor,
the frequency o>r is given (based on an appropriate frequency
selection criterion). The additional relation (or constraint)
needed to close the problem is provided by the maximization
of the temporal growth rate ojf-. These four real relations are
the basis for the frequency-tracking procedure implemented in
SCOLIC.

The spatial amplification factor in the direction of the real
part of the group velocity is obtained using Caster's relation10:

y. = -(a)i/\Vgr\) (12)

The evaluation of y, involves the knowledge of the group ve-
locity. In the temporal formulation, where only a) is a complex
number, the real part of the group velocity is given by

da>,
8r da9 (13)

The basis of the temporal frequency tracking is the maximi-
zation of ait for a given a)r. First, the desired frequency,
a)fPEC is found, and then o>e is maximized along this constant
frequency contour. To find the desired frequency, A a and A/3
are given by

Vgr\2 da

where

a>r

(14)

(15)

(16)

Once the specified frequency is reached, co7 is maximized
along the constant frequency contour. The appropriate expres-
sions for Aa and A/3 are obtained from the complex dispersion
relation:

1
\V8I\

ldcor ldcor\ dcOj
\ d3 / da I da

(17)

Temporal-Eigenvalue
Calculation Procedure

STOP
Temporal Frequency
Tracking Algorithm

COMPUTE
the desired wave numbers

using Eqs. (14) and (15)

COMPUTE
the desired wave numbers
using Eqs. (17) and (18)

COMPUTE
the eigenvalue (cor, co,) using the
the Inverse Rayleigh Iter. Proc.

CONSTRUCT
the eigenvalue system

(Eq.(4))

COMPUTE
the spatial amplification factor y,

using Caster's Relation (Eq. (12))

then

Spatial-Eigenvalue
Calculation Procedure

READ
boundary-layer profiles

at the next station

COMPUTE
n factor

using Eq. (9)

PRINT
the results

at this station

Fig. 1 Overall algorithm for the hybrid method.
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d(*)r /do)r——y ——
dj8/ da

(18)

The algorithm for the frequency tracking is the flow chart con-
tained within the dashed-line box presented in Fig. 1.

B. Spatial Frequency Tracking
In the spatial stability theory, there are five independent pa-

rameters: ar, ah /3,., /3/, and a). The spatial eigenvalue problem,
the given frequency co, and the optimization of the spatial
growth rate provide four real relations. The fifth real relation
is obtained from the constraint that

da
— G Realdp (19)

This relation was derived by Cebeci and Stewartson3 and Nay-
feh.11 These five real relations can be used to derive a spatial
frequency tracking method. The spatial amplification factor in
the x direction, ah is a direct result of the nonlinear eigenvalue
problem of the spatial stability theory. The spatial amplification
factor in the direction of the real part of the group velocity,
needed for the calculation of the n factor, is given by

da>
da

(20)

The real part of the group velocity is given by Eq. (10).

C. Proposed Hybrid Method
The advantage of the hybrid method is that the temporal

formulation is used to obtain a first guess for the spatial growth
rate. The linearity of the temporal system results in time saving
with respect to the nonlinear spatial system. In the proposed
hybrid method, global calculations are performed using the
temporal formulation: for given real a and /3, the temporal
eigenvalues wr and a>, can be obtained. The temporal eigen-
values obtained with the global calculation are then trans-
formed into spatial eigenvalues using appropriate relations that
exist between the temporal and the spatial formulations.10'11

This provides the initial guess for the local solution of the
linearized spatial eigenvalue problem, Eq. (8).

In the case of an infinite swept wing, the approximation
Pi = 0 can be used, and assuming that the imaginary part of
the group velocity is much smaller than the real part, the re-
lation between the temporal and spatial formulations is given
by

/act),
da (21)

Eq. (21) is the relation used in the hybrid method to calculate
the initial guesses for the spatial eigenvalues from the results
of the global calculation performed in the context of the tem-
poral formulation.

In the hybrid method, the instability tracking is done in the
context of the temporal formulation. Once the appropriate dis-
turbance is found, a local calculation based on the spatial for-
mulation is achieved to obtain directly the spatial growth rate
needed in the calculation of the n factor. The algorithm used
by the hybrid method for the calculation of the n factor is
illustrated in Fig. 1. This algorithm assumes that the group
velocity based on the temporal formulation is a good approx-
imation of the spatial group velocity.

The main differences between the temporal and spatial fre-
quency tracking procedures are the following:

1) Maximization is applied on the temporal growth rate in
the former, while in the latter the spatial growth rate is opti-
mized.

2) An additional constraint, Eq. (19), is applied in the spatial
frequency tracking.

It can be shown that the frequency trackings used in the
hybrid and spatial methods are equivalent. According to Nay-
feh,11 for a parallel flow, the additional constraint, Eq. (19),
reduces to

da/ dp ~ '~~ (22)

This equation stipulates that for a physical problem, the ratio

1.20r

0.80 -

0.00

Run # 42
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0.00 0.20 0.40 . 0.60 0.80 1.00
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0.60 Run # 60

. = 0.74

Re = 14.4 106

0.00 0.20 0.40 . 0.60 0.80 1.00

1.20

0.40

0.20

0.00
0.40 0.60 0.80 1.00

Fig. 2 Experimental Mach number distributions.
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Fig. 3 //-factor calculations: a) orientation of the most amplified
disturbance and b) w-factor distribution.

of the group velocity components must be real. In the context
of the temporal formulation, Eq. (22) can be recast as

da)r I da)r

da dft da
(23)

which corresponds to the maximization of o>, for a given a>r.
Therefore, the maximization of 6>f- for a constant cor of the
temporal frequency tracking procedure is equivalent to the sad-
dle-point condition used in the spatial frequency tracking.
However, the maximization of a), for a constant a>r does not
ensure that the spatial growth rate in the direction of the real
part of the group velocity is maximized. This question is of
physical relevance in cases where multiple local maxima of o>,
exist for a given frequency cor (e.g., regions of the flow where
both crossflow and Tollmien-Schlichting instabilities occur).
In the context of the temporal formulation as is used in the
hybrid method, the local maximum of ct>, corresponding to the
maximum value of the spatial growth rate is chosen by nu-
merical inspection so that the results obtained with the pro-
posed hybrid method should be the same (within numerical
accuracy) as those obtained with a traditional spatial formu-
lation. Furthermore, the proposed hybrid method is believed
to be more efficient than the traditional spatial formulation.

The main advantages of the proposed hybrid method are the
following:

1) The initial guesses for the spatial eigenvalues are obtained
using a global calculation with the temporal formulation that

requires less CPU time and memory than the corresponding
spatial problem.

2) Caster's relation is not needed for the n-factor calcula-
tions: the spatial growth rate is a direct result of the linearized
spatial eigenvalue problem.

IV. Results
To demonstrate the capability of the proposed hybrid

method, stability/transition calculations over the suction side
of a 15-deg swept tapered wing with an AS409 cross section
were undertaken. Experimental pressure distributions and tran-
sition locations were obtained in the T2 transonic tunnel of
ONERA/CERT.12-14 Cebeci et al.13 and Niethammer14 have
also presented stability/transition calculations over this wing
using the spatial theory. To avoid fully three-dimensional sta-
bility/transition analysis, their calculations were performed un-
der the approximation of an infinite swept wing having the
mean sweep angle of the actual swept tapered wing. The re-
sults presented in this article correspond to experimental runs
no. 42, 60, and 79.12 The experimental Mach number distri-
butions are given in Fig. 2. Some physical irregularities are
present on the test model as can be seen from the Mach num-
ber distributions near x/c = 0.3 and 0.5.

The results for run no. 42 are presented in Fig. 3, where the
predictions of the hybrid method are compared with the so-
lutions obtained using the ONERA/CERT method.13'14 Run no.
42 was for a stagnation temperature and pressure of 145 K

75

60

30

15

Run # 60

M.. = 0.74

Re = 14.4-106

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70
a) s/c

o.o

ONERA/CERT HYBRID
A ————

0 - - _ _

f(Hz)
28653

5731

Run # 60

. = 0.74

Re = 14.4-106
c

b)
0.00 0.10 0.30 0.40 0.50 0.60

S/C

Fig. 4 //-factor calculations: a) orientation of the most amplified
disturbance and b) //-factor distribution.
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and 2 bars, respectively, and a chord Reynolds number of 12.8
X 106. Figure 3a shows the orientation of the most amplified
disturbance as a function of the distance from the attachment
line sic for two selected frequencies. For the purpose of com-
parison, the frequencies used in this study are the ones selected
in Refs. 13 and 14. The results of the proposed hybrid method
and the ONERA/CERT method are in very good agreement.
The orientation of the most amplified low-frequency distur-
bance (/ = 4923 Hz) is almost constant along the wing with
a value near 88 deg, indicating a pure crossflow instability. In
this case, the temporal frequency tracking procedure used in
the hybrid method produces results identical to the spatial pro-
cedure of the ONERA/CERT method. In the case of the higher
frequency (/= 30770 Hz), large variations of the most am-
plified disturbance orientation along the wing are predicted by
both methods. Near the attachment line, the disturbance is
mainly in the direction of the crossflow instabilities. The large
variations in the most amplified disturbance orientation are the
result of the locally adverse pressure gradients induced by the
presence of small hollows in the model.14 The hybrid method
predicts these large variations in satisfactory agreement with
the solution obtained using the ONERA/CERT method. These
successful comparisons of the orientation of the most amplified
disturbance strongly suggest that the frequency tracking pro-
cedure of the temporal formulation is equivalent to its spatial
counterpart, n-factor calculations are presented in Fig. 3b.
Here, again, the present results are very close to the ones ob-
tained with the ONERA/CERT method.

60

45

30

15

0.10 0.40 0.50
S/C

0.70

8.0 r

6.0

2.0

ONERA/CERT HYBRID f(Hz)
30770

4923

Run # 79

M_ = 0.74

Re =13.4-106

0.00 0.10 0.20 0.30 0.40 0.50
S/C

0.60 0.70
b)

Fig. 5 //-factor calculations: a) orientation of the most amplified
disturbance and b) «-factor distribution.

The results concerning run no. 60 are illustrated in Fig. 4.
The stagnation temperature, pressure, and the Reynolds num-
ber for this case are 134 K, 2 bars, and 14.4 X 106, respec-
tively. The orientation of the most amplified disturbance pre-
dicted by the proposed hybrid method and the ONERA/CERT
method (see Fig. 4a) are again in very good agreement, sup-
porting the validity of the frequency tracking procedure im-
plemented in the proposed hybrid method. Predictions with the
hybrid method for the n factors are lower than those of the
ONERA/CERT method. For any given frequency, the differ-
ence is nearly constant along the wing (about 0.2 for/= 28,653
Hz and 0.4 for/= 5731 Hz). This nearly constant difference
can be attributed to a slight delay of the point of inception
predicted by the hybrid method with respect to the one cal-
culated by the ONERA/CERT method. This difference, how-
ever, is expected to be related to the size of the marching step
near the leading edge during the laminar boundary-layer cal-
culations. Using a similar mesh should result in a closer agree-
ment between the two methods.

The influence of larger stagnation temperature and pressure
on the stability behavior is illustrated in run no. 79 for which
the stagnation temperature, pressure, and the Reynolds number
are 164 K, 2.5 bars, and 13.4 X 106, respectively. The com-
parisons, presented in Fig. 5, show again good agreement, add-
ing confidence to the validity of the proposed hybrid method.

The prediction of the critical n factor for runs no. 42 and
79 has been conducted using the frequency selection strategy
proposed in Ref. 15. The results are presented in Fig. 6. The
experimental transition location for run no. 42 is around xlc =

8.0

6.0

4.0

Run # 42
M. = 0.74
Rec= 12.8-106

a)

8.0

6.0

2.0

0.10

Run # 79
M_ = 0.74
Re = 13.4106

0.20 0.30
S/C

0.50

b)
0.00 0.20 0.30

S/C
0.40

Fig. 6 Critical /*-factor calculations.



MASSON ET AL. 937

0.47. Based on the results of Fig. 6a, the critical n factor is
around 5.6. Experimental transition location is not available
for run no. 79, but since its drag coefficient is similar to the
one of run no. 42, it may be assumed that transition occurs
near xlc = 0.47.13'14 Based on the results of Fig. 6b, and using
this assumed transition location, the critical n factor for run
no. 79 is 6.5. The proposed hybrid method is certainly ade-
quate for transition predictions, considering that the critical n
factor for the T2 transonic tunnel is between 7-8.13'14 The
critical n factor for run no. 60 is not predicted since the tran-
sition for this run was triggered by ice crystals, a phenomenon
that is not modeled in this analysis.

V. Conclusions
The major contribution of this work is the implementation

of the spatial formulation and its original inclusion in SCOLIC,
yielding a new hybrid method. The main idea in the proposed
hybrid method is to join the advantages and strengths of the
two formulations resulting in an effective method.

1) The global calculations are performed on the linear ei-
genvalue problem of the temporal formulation since the order
of the matrices involved is almost half the order of those in-
volved during the global solution of the nonlinear eigenvalue
problem associated to the spatial formulation.

2) The selection of the most critical frequency is done using
the temporal formulation, since the frequency is part of the
solution in this formulation, making the prediction of the fre-
quency of the most amplified disturbance an easier task than
in the context of the spatial formulation.

3) The tracking of the instability during the ^-factor calcu-
lations is conducted using the temporal formulation, since it
involves four parameters instead of the five parameters asso-
ciated to the spatial formulation.

4) The spatial growth rate used in the calculation of the n
factor is obtained by a local solution of the linearized spatial
eigenvalue problem, eliminating reliance on Caster's relation.

The proposed hybrid method has been validated through
comparisons with available numerical solutions and observed
transition locations.
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